Zinc oxide (ZnO) based quantum dots for bioimaging applications of lipid nanocarriers
Theranostic systems consist of a single device containing therapeutic and diagnosis agents and receive increased attention because these devices can improve the therapy of diseases such as cancer, decreasing the toxic side effects and permitting to monitor the treatment. The aim of this work was to develop theranostic systems consisting of lipid based nanocarriers containing ZnO based quantum dots (QDs) as luminescent probes, and allowing to encapsulate a model drug for cancer therapy. Firstly, the synthesis of ZnO/ZnS QDs was studied, aiming to achieve improved luminescent properties. In this step, X-Rays Absorption Spectroscopy, together with other usual characterization techniques, could identify the synthesis condition in which core-shell structures were formed. Nevertheless, the emission of ZnO/ZnS QDs in the visible range was not promising. Therefore, Mg-doped ZnO QDs were synthesized; their luminescence went through a maximum for a 20 mol% nominal concentration of Mg2+ ions in the reaction medium. Zn0.8Mg0.2O QDs presented quantum yield (QY) six times higher (QY = 64%) than undoped ones (QY = 10%). ZnO and Zn0.8Mg0.2O QDs capped by oleic acid (OA) were synthesized and formed stable colloidal dispersions in chloroform and toluene. The QY of OA-Zn0.8Mg0.2O was about 4 times (around 40%) higher than that of the OA-ZnO QDs. Zn0.8Mg0.2O QDs and OA-Zn0.8Mg0.2O QDs could be incorporated into lipid based nanocarriers of average hydrodynamic diameter around 100 â 220 nm. The luminescent solid lipid nanoparticles (SLN) were stable in different media at 37°C during 3 hours. The fluorescence study showed slightly enhanced emission of the J774 macrophage-like cells treated with 2 mg/mL of luminescent SLN during 50 min, suggesting partial internalization of the nanoparticles into the macrophages. However, the internalization studies using fluorescence video-microscopy and microscopy were not successful, because the equipment (wavelengths of excitation and emission) did not allow overcoming the cell auto-fluorescence phenomena.
Les systĂšmes thĂ©ranostiques, consistant en un dispositif unique contenant des agents de diagnostic et des principes actifs, suscitent un interĂȘt accru car ils peuvent amĂ©liorer le traitement de maladies telles que le cancer en rĂ©duisant les effets secondaires des mĂ©dicaments et en permettant un suivi du traitement. Lâobjectif de ce travail Ă©tait dâinsĂ©rer des Quantum Dots (QDs) Ă base de ZnO dans des nanoparticules lipidiques pouvant dĂ©livrer un principe actif anti-cancĂ©reux. Nous avons dâabord cherchĂ© Ă synthĂ©tiser des QDs prĂ©sentant une structure coeur-coquille ZnO/ZnS pour amĂ©liorer leurs propriĂ©tĂ©s de luminescence. La spectroscopie dâabsorption des rayons X, associĂ©e Ă des techniques usuelles de caractĂ©risation, a permis de dĂ©terminer les conditions de synthĂšse conduisant Ă la formation dâune structure coeur-coquille. NĂ©anmoins, lâĂ©mission dans le visible de ces QDs nâĂ©tait pas satisfaisante. Des QDs dopĂ©s par des ions Mg ont donc Ă©tĂ© synthĂ©tisĂ©s. LâintensitĂ© de leur luminescence passe par un maximum pour une concentration molaire nominale dâions Mg dans le milieu de rĂ©action Ă©gale Ă 20%. Les QDs Zn0.8Mg0.2O prĂ©sentent un rendement quantique (QY) six fois plus grand (QY ~64%) que celui des QDs de ZnO non dopĂ©s (QY ~ 10%). Les QDs dont la surface a Ă©tĂ© modifiĂ©e par de lâacide olĂ©ique (OA) forment une suspension colloidale stable dans le chloroforme et le toluĂšne. Le rendement quantique des QDs OA-Zn0.8Mg0.2O Ă©tait environ quatre fois plus Ă©levĂ© (Qy ~40%) que celui des QDs OA-ZnO. Les QDs Zn0.8Mg0.2O et OA-Zn0.8Mg0.2O ont Ă©tĂ© incorporĂ©s dans des nanoparticules lipidiques ayant un diamĂštre hydrodynamique moyen de lâordre de 100- 220 nm. Les nanoparticules lipidiques solides (SLN) contenant des QDs sont restĂ©es stables dans diffĂ©rents milieux biologiques pendant trois heures Ă 37°C. Des mesures de fluorescence sur des suspensions de macrophages J774 ont montrĂ© une faible augmentation de lâintensitĂ© de lâĂ©mission visible pour les cellules incubĂ©es avec 2 mg/mL de SLNs luminescentes pendant 50 min, suggĂ©rant une internalisation partielle des nanoparticules par les macrophages. Malheureusement, ces rĂ©sultats nâont pas pu ĂȘtre confirmĂ©s par vidĂ©o-microscopie et microscopie de fluorescence sur les cellules parce que les conditions expĂ©rimentales ( longueurs dâonde dâexcitation et dâĂ©mission possibles) ne permettaient pas dâobserver un signal supĂ©rieur Ă celui de l’auto-fluorescence des cellules.
https://tel.archives-ouvertes.fr/tel-01424186/file/71719_BERBELMANAIA_2016_diffusion.pdf