Efficient finite element methods for solving high-frequency time-harmonic acoustic wave problems in heterogeneous media - PhDData

Access database of worldwide thesis




Efficient finite element methods for solving high-frequency time-harmonic acoustic wave problems in heterogeneous media

The thesis was published by Royer, Anthony, in January 2023, Université de Liège.

Abstract:

This thesis focuses on the efficient numerical solution of frequency-domain wave propagation problems using finite element methods. In the first part of the manuscript, the development of domain decomposition methods is addressed, with the aim of overcoming the limitations of state-of-the art direct and iterative solvers. To this end, a non-overlapping substructured domain decomposition method with high-order absorbing conditions used as transmission conditions (HABC DDM) is first extended to deal with cross-points, where more than two subdomains meet. The handling of cross-points is a well-known issue for non-overlapping HABC DDMs. Our methodology proposes an efficient solution for lattice-type domain partitions, where the domains meet at right angles. The method is based on the introduction of suitable relations and additional transmission variables at the cross-points, and its effectiveness is demonstrated on several test cases. A similar non-overlapping substructured DDM is then proposed with Perfectly Matched Layers instead of HABCs used as transmission conditions (PML DDM). The proposed approach naturally considers cross-points for two-dimensional checkerboard domain partitions through Lagrange multipliers used for the weak coupling between subproblems defined on rectangular subdomains and the surrounding PMLs. Two discretizations for the Lagrange multipliers and several stabilization strategies are proposed and compared. The performance of the HABC and PML DDM is then compared on test cases of increasing complexity, from two-dimensional wave scattering in homogeneous media to three-dimensional wave propagation in highly heterogeneous media. While the theoretical developments are carried out for the scalar Helmholtz equation for acoustic wave propagation, the extension to elastic wave problems is also considered, highlighting the potential for further generalizations to other physical contexts. The second part of the manuscript is devoted to the presentation of the computational tools developed during the thesis and which were used to produce all the numerical results: GmshFEM, a new C++ finite element library based on the application programming interface of the open-source finite element mesh generator Gmsh; and GmshDDM, a distributed domain decomposition library based on GmshFEM.

The full thesis can be downloaded at :
https://orbi.uliege.be/handle/2268/297651


Read the last PhD tips