On Multi-Resolution 3D Orbital Imagery and Visualisation for Mars Geological Analysis - PhDData

Access database of worldwide thesis




On Multi-Resolution 3D Orbital Imagery and Visualisation for Mars Geological Analysis

The thesis was published by Persaud, Divya M., in July 2022, UCL (University College London).

Abstract:

Mars Science Laboratory has revealed a dynamic history of water as the rover has ascended the mysterious Mount Sharp in Gale crater. Because rovers only “see” their local environment, planetary scientists rely on satellite-based orbital imagery to understand the regional geology of Gale crater. However, orbital imagery is map-view—viewed from above, lacking perspective—which presents challenges to interpretation of stratigraphy.
3D visualisation is an emerging opportunity to study orbital images in more intuitive, field-like environments, but has had limited application to Mars. In this work, I formulate and analyse 3D orbital imagery over Gale crater, Mars to investigate the stratigraphy of Mount Sharp 700 m above and 40 km away from MSL. First, I process orbital imagery from the HRSC, CTX, and HiRISE cameras into 3D digital terrain models (DTMs). I then co-register and evaluate these DTMs using statistical tools and existing products to build a new, validated, multi-resolution basemap tied down to MOLA.
Sakarya Vallis, a 400-m deep canyon on Mount Sharp, was then analysed in a 3D environment at 1 m/px. From measurements of exposed rock layers, I construct cross-sections, stratigraphic logs, and a geological unit map to capture this geology. Seven geological units are interpreted across 1 km of exposure, varying in thicknesses (10–174 m) and dips (3–12º). These units may reveal a cyclic depositional environment; a progradational sequence and channel; and unconformities. This work therefore suggests two periods of sub-aqueous deposition in this region during the Late Noachian to Early Hesperian. These results further provide geological context of Gale crater as MSL ascends Mount Sharp, and future inputs for palaeoenvironmental models of Gale crater.



Read the last PhD tips