Graphlet-adjacencies provide complementary views on the functional organisation of the cell and cancer mechanisms - PhDData

Access database of worldwide thesis




Graphlet-adjacencies provide complementary views on the functional organisation of the cell and cancer mechanisms

The thesis was published by Windels, Sam Freddy Ludwien, in October 2022, UCL (University College London).

Abstract:

Recent biotechnological advances have led to a wealth of biological network data. Topo- logical analysis of these networks (i.e., the analysis of their structure) has led to break- throughs in biology and medicine. The state-of-the-art topological node and network descriptors are based on graphlets, induced connected subgraphs of different shapes (e.g., paths, triangles). However, current graphlet-based methods ignore neighbourhood infor- mation (i.e., what nodes are connected). Therefore, to capture topology and connectivity information simultaneously, I introduce graphlet adjacency, which considers two nodes adjacent based on their frequency of co-occurrence on a given graphlet. I use graphlet adjacency to generalise spectral methods and apply these on molecular networks. I show that, depending on the chosen graphlet, graphlet spectral clustering uncovers clusters en- riched in different biological functions, and graphlet diffusion of gene mutation scores predicts different sets of cancer driver genes. This demonstrates that graphlet adjacency captures topology-function and topology-disease relationships in molecular networks.
To further detail these relationships, I take a pathway-focused approach. To enable this investigation, I introduce graphlet eigencentrality to compute the importance of a gene in a pathway either from the local pathway perspective or from the global network perspective. I show that pathways are best described by the graphlet adjacencies that capture the importance of their functionally critical genes. I also show that cancer driver genes characteristically perform hub roles between pathways.
Given the latter finding, I hypothesise that cancer pathways should be identified by changes in their pathway-pathway relationships. Within this context, I propose pathway- driven non-negative matrix tri-factorisation (PNMTF), which fuses molecular network data and pathway annotations to learn an embedding space that captures the organisation of a network as a composition of subnetworks. In this space, I measure the functional importance of a pathway or gene in the cell and its functional disruption in cancer. I apply this method to predict genes and the pathways involved in four major cancers. By using graphlet-adjacency, I can exploit the tendency of cancer-related genes to perform hub roles to improve the prediction accuracy.



Read the last PhD tips