Learning to communicate in cooperative multi-agent reinforcement learning - PhDData

Access database of worldwide thesis




Learning to communicate in cooperative multi-agent reinforcement learning

The thesis was published by Pesce, Emanuele, in January 2023, University of Warwick.

Abstract:

Recent advances in deep reinforcement learning have produced unprecedented results. The success obtained on single-agent applications led to exploring these techniques in the context of multi-agent systems where several additional challenges need to be considered. Communication has always been crucial to achieving cooperation in multi-agent domains and learning to communicate represents a fundamental milestone for multi-agent reinforcement learning algorithms. In this thesis, different multi-agent reinforcement learning approaches are explored. These provide architectures that are learned end-to-end and capable of achieving effective communication protocols that can boost the system performance in cooperative settings. Firstly, we investigate a novel approach where intra-agent communication happens through a shared memory device that can be used by the agents to exchange messages through learnable read and write operations. Secondly, we propose a graph-based approach where connectivities are shaped by exchanging pairwise messages which are then aggregated through a novel form of attention mechanism based on a graph diffusion model. Finally, we present a new set of environments with real-world inspired constraints that we utilise to benchmark the most recent state-of-theart solutions. Our results show that communication can be a fundamental tool to overcome some of the intrinsic difficulties that characterise cooperative multi-agent systems.



Read the last PhD tips