Quantum molecular trajectory and stochastic theories of quantum fluctuations - PhDData

Access database of worldwide thesis




Quantum molecular trajectory and stochastic theories of quantum fluctuations

The thesis was published by Avanzini, Francesco, in January 2017, University of Padova.

Abstract:

Bohm theory is a formulation of Quantum Mechanics that characterises the state of a quantum system according to both the wave function, as in the conventional formulation, and the coordinates (positions) of all the particles that evolve in time drawing quantum continuous trajectories. Furthermore, a statistical ensemble of all the possible trajectories, raising from the impossibility to know the initial position of all the particles, establishes the exact correspondence with the traditional Quantum Mechanics. From a computational point of view, Bohm theory has found many applications in Chemical Physics especially to develop new methodologies for solving the Schrödinger equation and to address semi-classical approximations of Quantum Mechanics.
From a theoretical point of view, the most appealing feature of Bohm theory is its capability to supply a conceptual map between the quantum formalism and our representation of what a chemical system is. Chemical systems are composed of molecules, but the same idea of molecule requires a specific arrangement in the space of particles, i.e., the nuclei of the atoms. The statistical description of conventional Quantum Mechanics on the basis of wave function alone is insufficient to establish a clear correspondence with such a picture of molecules. Indeed, chemists employ usually Classical Mechanics in order to overcome this drawback of the standard quantum theory. On the other hand, if the particles position is included in the quantum formalism, as Bohm theory does, the map can be defined in a self-consistent way. In other words, Bohm theory appears to be the suitable quantum framework to represent molecules and their motion.
The chemical representation of molecular systems finds a natural correspondence with a single Bohm trajectory, since it is always implicitly assumed that molecular components have specific spatial position independently of our knowledge about it. Consequently, we develop a quantum method whose fundamental assumption is that a single Bohm trajectory, i.e., a quantum molecular trajectory, describes the molecular systems and the molecular motion correctly.
First of all, we examine the correspondence between a single Bohm trajectory and the conventional Quantum Mechanics, without using the ensemble of trajectories. We verify that such a correspondence exists through numerical simulations and we prove formally that the statistical properties of a single Bohm trajectory explain the probabilistic description of Quantum Mechanics. Once the consistency of this original approach has been established, we investigate the predicted properties. For instance, we take into account the constants of motion (such as the energy) corresponding to the time evolution of the coordinates and the behaviour of simple chemical systems, e.g., the vibrational motion of single molecules interacting with a resonant field. In this way, unexpected features of the molecular motion are found.
Secondly, we tackle the challenge of describing many components systems (like the chemical systems in ordinary conditions). As a matter of fact, the computation of the Bohm trajectory and of the wave function is extremely demanding. However, the statistical properties of the Bohm trajectory allow the derivation of stochastic theories for examining the dynamics of open quantum systems, i.e., few molecules (or few degrees of freedom) interacting with their environment (the other molecules). One of the developed stochastic methods correlates the dynamics of the reduced density matrix, for the degrees of freedom of interest, to the evolution of the corresponding Bohm coordinates. In other words, the Bohm equation, determining the set of all the particles velocities according to the full wave function, is replaced with a stochastic one that approximates the velocity of a subset of coordinates according to the reduced density matrix. In such a way, the quantum fluctuations induced by the environment are taken into account.
The advantage of this method concerns its capability of describing quantum systems, including open quantum systems, in terms of a quantum trajectory. This could allow the understanding of the molecular motion during a spectroscopical experiment. The possibility of investigating reactive systems, such as conformational changes, is particularly interesting. As a matter of fact, chemical reactions can be completely characterised only through the particles motion and we define the suit- able quantum methodology providing a self-consistent description of the molecular motion.



Read the last PhD tips