Stochastic Optimisation Methods Applied to PET Image Reconstruction - PhDData

Access database of worldwide thesis




Stochastic Optimisation Methods Applied to PET Image Reconstruction

The thesis was published by Twyman Skelly, Robert, in September 2022, UCL (University College London).

Abstract:

Positron Emission Tomography (PET) is a medical imaging technique that is used to pro- vide functional information regarding physiological processes. Statistical PET reconstruc- tion attempts to estimate the distribution of radiotracer in the body but this methodology is generally computationally demanding because of the use of iterative algorithms. These algorithms are often accelerated by the utilisation of data subsets, which may result in con- vergence to a limit set rather than the unique solution. Methods exist to relax the update step sizes of subset algorithms but they introduce additional heuristic parameters that may result in extended reconstruction times. This work investigates novel methods to modify subset algorithms to converge to the unique solution while maintaining the acceleration benefits of subset methods.
This work begins with a study of an automatic method for increasing subset sizes, called AutoSubsets. This algorithm measures the divergence between two distinct data subset update directions and, if significant, the subset size is increased for future updates. The algorithm is evaluated using both projection and list mode data. The algorithm’s use of small initial subsets benefits early reconstruction but unfortunately, at later updates, the subsets size increases too early, which impedes convergence rates.
The main part of this work investigates the application of stochastic variance reduction optimisation algorithms to PET image reconstruction. These algorithms reduce variance due to the use of subsets by incorporating previously computed subset gradients into the update direction. The algorithms are adapted for the application to PET reconstruction. This study evaluates the reconstruction performance of these algorithms when applied to various 3D non-TOF PET simulated, phantom and patient data sets. The impact of a number of algorithm parameters are explored, which includes: subset selection methodologies, the number of subsets, step size methodologies and preconditioners. The results indicate that these stochastic variance reduction algorithms demonstrate superior performance after only a few epochs when compared to a standard PET reconstruction algorithm.



Read the last PhD tips