Functional analysis of Group 2 chaperonins from archaeal species in E. coli - PhDData

Access database of worldwide thesis




Functional analysis of Group 2 chaperonins from archaeal species in E. coli

The thesis was published by Shah, Riddhi, in July 2014, University of Birmingham.

Abstract:

The chaperonin proteins form a ubiquitous family of molecular chaperones and are absolutely required for correct folding or assembly of a subset of proteins in the cell. They are divided into two groups based on phylogeny: Group 1 found in bacteria and eukaryotic-organelles and Group 2 found in eukaryotic-cytoplasma and archaea. The two groups share a significant degree of conservation but differ in structure and mechanism and are believed to have evolved to serve specific client proteins. Using archaeal chaperonin from M. maripaludis (MmCCT) as a representative, we report here for the first time that a Group 2 chaperonin can partially replace the function of a Group 1 chaperonin from E. coli (GroEL). We have also identified and characterized two functional variants of MmCCT that show better GroEL complementation and have utilized them for a preliminary mutational analysis of potential client binding residues of MmCCT. We further demonstrate an initiative using a tagging approach for identification of bacterial proteins that interact with MmCCT in vivo. We suggest that our findings provide a novel platform for genetic dissection of MmCCT using a comparatively simple host, E. coli, which in turn can help identify properties of this archaeal chaperonin and provide insights for structure-function co-relations of Group 2 chaperonins in general.



Read the last PhD tips