Pixel-level semantic understanding of ophthalmic images and beyond - PhDData

Access database of worldwide thesis




Pixel-level semantic understanding of ophthalmic images and beyond

The thesis was published by Pissas, Theodoros, in October 2022, UCL (University College London).

Abstract:

Computer-assisted semantic image understanding constitutes the substrate of applications that range from biomarker detection to intraoperative guidance or street scene understanding for self-driving systems. This PhD thesis is on the development of deep learning-based, pixel-level, semantic segmentation methods for medical and natural images. For vessel segmentation in OCT-A, a method comprising iterative refinement of the extracted vessel maps and an auxiliary loss function that penalizes structural inaccuracies, is proposed and tested on data captured from real clinical conditions comprising various pathological cases. Ultimately, the presented method enables the extraction of a detailed vessel map of the retina with potential applications to diagnostics or intraoperative localization. Furthermore, for scene segmentation in cataract surgery, the major challenge of class imbalance is identified among several factors. Subsequently, a method addressing it is proposed, achieving state-of-the-art performance on a challenging public dataset. Accurate semantic segmentation in this domain can be used to monitor interactions between tools and anatomical parts for intraoperative guidance and safety. Finally, this thesis proposes a novel contrastive learning framework for supervised semantic segmentation, that aims to improve the discriminative power of features in deep neural networks. The proposed approach leverages contrastive loss function applied both at multiple model layers and across them. Importantly, the proposed framework is easy to combine with various model architectures and is experimentally shown to significantly improve performance on both natural and medical domains



Read the last PhD tips