Unsupervised learning methods for identifying and evaluating disease clusters in electronic health records
Introduction
Clustering algorithms are a class of algorithms that can discover groups of observations in
complex data and are often used to identify subtypes of heterogeneous diseases in electronic
health records (EHR). Evaluating clustering experiments for biological and clinical significance is
a vital but challenging task due to the lack of consensus on best practices. As a result, the
translation of findings from clustering experiments to clinical practice is limited.
Aim
The aim of this thesis was to investigate and evaluate approaches that enable the evaluation of
clustering experiments using EHR.
Methods
We conducted a scoping review of clustering studies in EHR to identify common evaluation
approaches. We systematically investigated the performance of the identified approaches using
a cohort of Alzheimer’s Disease (AD) patients as an exemplar comparing four different
clustering methods (K-means, Kernel K-means, Affinity Propagation and Latent Class
Analysis.). Using the same population, we developed and evaluated a method (MCHAMMER)
that tested whether clusterable structures exist in EHR. To develop this method we tested
several cluster validation indexes and methods of generating null data to see which are the best
at discovering clusters. In order to enable the robust benchmarking of evaluation approaches,
we created a tool that generated synthetic EHR data that contain known cluster labels across a
range of clustering scenarios.
Results
Across 67 EHR clustering studies, the most popular internal evaluation metric was comparing
cluster results across multiple algorithms (30% of studies). We examined this approach
conducting a clustering experiment on AD patients using a population of 10,065 AD patients and
21 demographic, symptom and comorbidity features. K-means found 5 clusters, Kernel K means found 2 clusters, Affinity propagation found 5 and latent class analysis found 6. K-means
4
was found to have the best clustering solution with the highest silhouette score (0.19) and was
more predictive of outcomes. The five clusters found were: typical AD (n=2026), non-typical AD
(n=1640), cardiovascular disease cluster (n=686), a cancer cluster (n=1710) and a cluster of
mental health issues, smoking and early disease onset (n=1528), which has been found in
previous research as well as in the results of other clustering methods. We created a synthetic
data generation tool which allows for the generation of realistic EHR clusters that can vary in
separation and number of noise variables to alter the difficulty of the clustering problem. We
found that decreasing cluster separation did increase cluster difficulty significantly whereas
noise variables increased cluster difficulty but not significantly. To develop the tool to assess
clusters existence we tested different methods of null dataset generation and cluster validation
indices, the best performing null dataset method was the min max method and the best
performing indices we Calinksi Harabasz index which had an accuracy of 94%, Davies Bouldin
index (97%) silhouette score ( 93%) and BWC index (90%). We further found that when clusters
were identified using the Calinski Harabasz index they were more likely to have significantly
different outcomes between clusters. Lastly we repeated the initial clustering experiment,
comparing 10 different pre-processing methods. The three best performing methods were RBF
kernel (2 clusters), MCA (4 clusters) and MCA and PCA (6 clusters). The MCA approach gave
the best results highest silhouette score (0.23) and meaningful clusters, producing 4 clusters;
heart and circulatory( n=1379), early onset mental health (n=1761), male cluster with memory
loss (n = 1823), female with more problem (n=2244).
Conclusion
We have developed and tested a series of methods and tools to enable the evaluation of EHR
clustering experiments. We developed and proposed a novel cluster evaluation metric and
provided a tool for benchmarking evaluation approaches in synthetic but realistic EHR.
https://discovery.ucl.ac.uk/id/eprint/10163568/2/Nonie_Alexander_thesis_corrections.pdf